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Abstract

This paper introduces a novel high order interface scheme, the matched interface and boundary (MIB) method, for
solving elliptic equations with discontinuous coefficients and singular sources on Cartesian grids. By appropriate use of
auxiliary line and/or fictitious points, physical jump conditions are enforced at the interface. Unlike other existing inter-
face schemes, the proposed method disassociates the enforcement of physical jump conditions from the discretization of
the differential equation under study. To construct higher order interface schemes, the proposed MIB method bypasses
the major challenge of implementing high order jump conditions by repeatedly enforcing the lowest order jump condi-
tions. The proposed MIB method is of arbitrarily high order, in principle. In treating straight, regular interfaces we
construct MIB schemes up to 16th-order. For more general elliptic problems with curved, irregular interfaces and
boundary, up to 6th-order MIB schemes have been demonstrated. By employing the standard high-order finite differ-
ence schemes to discretize the Laplacian, the present MIB method automatically reduces to the standard central differ-
ence scheme when the interface is absent. The immersed interface method (IIM) is regenerated for a comparison study
of the proposed method. The robustness of the MIB method is verified against the large magnitude of the jump discon-
tinuity across the interface. The nature of high efficiency and low memory requirement of the MIB method is extensively
validated via solving various elliptic immersed interface problems in two- and three-dimensions.
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1. Introduction

In this paper, we propose a class of numerical methods for solving elliptic interface problems
r � ðbruÞ � juðxÞ ¼ qðxÞ; x 2 X ¼ Xþ [ X� ð1Þ

with a boundary condition on oX on regular Cartesian grids. For simplicity, X is assumed to be a regular
domain, such as rectangle type in two-dimensions (2D) or cube like in three-dimensions (3D). Across the
interface C in domain X, the coefficient function b(x) of the elliptic equation is discontinuous, while the
source term q(x) may be even singular. Depending on the properties of the source term q(x), we usually
have jump conditions across the interface C:
½u� ¼ uþðXðsÞÞ � u�ðXðsÞÞ ¼ /ðsÞ; ½bun� ¼ bþuþn ðXðsÞÞ � b�u�n ðXðsÞÞ ¼ wðsÞ; ð2Þ
where X(s) is a point on the interface C, s the arc-length parametrization of the interface C, and n the unit
normal direction. The superscript, � or +, denotes the limiting value of a function from one side or the
other of the interface. Such an elliptic interface problem is often encountered in fluid dynamics, molecular
biology [13], and material science, and its solution is usually non-smooth or even discontinuous across the
interface. The standard numerical methods designed for smooth solutions usually perform poorly for these
interface problems. Consequently, the development of accurate and efficient numerical approaches based
on a Cartesian grid for the elliptic interface problems has attracted much attentions in the last decade
[1,2,5,17,18,25,27–29,35,48,51].

It is noted that there also exist numerous studies in the literature about a quite relevant problem, an ellip-
tic irregular domain problem [22,37,38]. One way to solve this problem is to embed the irregular domain in
a larger regular computational domain, and reformulate the original boundary conditions as interface jump
conditions. A simple Cartesian grid can then be adopted, so that various fast algebraic solvers developed in
the literature can be utilized. This essentially converts an elliptic irregular domain problem into an elliptic
interface problem. Due to this close relationship, the methods originally designed for one type of problems
may be extended to solve another one. However, in immersed boundary problems, no solution is sought
outside the domain boundary, whereas, in immersed interface problems, interface jump conditions couple
solutions in the both sides of the interface. We will primarily focus on solving the elliptic immersed interface
problems in the present study.

To solve an elliptic problem with an irregular domain or interface, a body-fitting grid can be employed
[3,7,8]. Nevertheless, for certain geometrically complex domains, the construction of a good body-fitting
mesh remains a nontrivial and time-consuming task, even though considerable progress has been made.
Furthermore, a considerable increase of the computational difficulties will be encountered for moving inter-
face problems, where a moving mesh method is required to regenerate or deform the grid during the sim-
ulation. Therefore, numerous modified finite difference (FD) methods that are based only on a simple
Cartesian grid have been chosen to solve the elliptic interface-related problems in the literature
[1,2,5,11,12,17,18,20,22,25,27–29,32,35,37–40,45,48,51]. One obvious advantage of Cartesian grid methods
is that there is no computational cost for grid generation. A Cartesian grid also allows the use of simple
data structures and standard FD stencil over a majority of the domain. Moreover, many contemporary
software packages, such as fast Poisson solvers, multigrid, level set method, etc., are mainly developed
for Cartesian grid, and thus could be taken advantage of. On the other hand, in order to properly maintain
the accuracy at the interface, some extra numerical work needs to be done near the interface in a Cartesian
FD method.

In the 1970–1980s, Peskin [32,39,40] developed the immersed boundary method (IBM) to model blood
flow in the heart. In the IBM, the complicated time-varying geometric boundary is regarded as being im-
mersed in the fluid, and the Navier–Stokes equation is solved on a simple Cartesian grid. The presence of
the embedded boundary is modeled via a singular source on the interfaces. The IBM has had success in
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modeling flow in complicated time-dependent geometry [11,45] due to its flexibility, efficiency, and robust-
ness. Recently, Tornberg and Engquist [44] have proposed and analyzed a class of regularization methods
for treating the singular source terms. An extensive review of the IBM for turbulent flow simulations can be
found in [20]. However, the IBM is typically first order accurate in higher dimensions.

Recently, some high order immersed boundary schemes have been proposed in the literature [15,33]. Gi-
bou and Fedkiw [15] constructed a fourth-order boundary scheme by using cubic extrapolation at the
boundary. This scheme was applied to the Laplace and heat equations. The advantage of this method is
its simplicity. Linnick [33] and Fasel developed a fourth-order immersed boundary scheme for flow past
cylinders by using the compact finite difference scheme. These high order immersed boundary schemes
are restricted to certain class of boundaries and have a potential to be generalized for treating elliptic equa-
tions with interface jump conditions, i.e., with discontinuous coefficients.

A major advance in this field was due to LeVeque and Li [25]. These authors proposed the immersed
interface method (IIM) for solving elliptic equations with discontinuous coefficients and singular sources.
In the IIM, local corrections of FD schemes on irregular grid points where the discretized Laplacian oper-
ator involves nodes from both sides of the interface, are pursued throughout the domain. This is achieved
by incorporating interface jump conditions into local Taylor expansions of the operator on irregular points,
from which FD schemes with genuinely first-order accurate truncation error can be derived. The resulting
FD scheme is of second-order accuracy and preserves the jumps at the interface. For 2D or 3D problems, a
local coordinate is typically required to offer a better representation of the jump conditions since they are
usually given in the direction normal to the interface. The IIM is robust and efficient, and has been success-
fully applied to a variety of interface-related problems, such as moving interface problems [17], elliptic
irregular domain problems [10], 3D interface problems [9], etc. The reader is referred to a recent review
[28] and references therein for more details about these applications.

Various extensions and further improvements of the IIM have been considered in the literature [4–
6,10,16–19,21,23,24,30,31,36,42,43,46,47,51]. The IIM formulations in polar coordinates [31] and using a
finite element method [27] were presented. Hou and Liu considered elliptic problems with non-smooth
interfaces [16]. Dumett and Keener proposed an IIM for solving anisotropic elliptic boundary value prob-
lems [10]. The problem of convergence and efficiency of the IIM has attracted much research interest. The
original IIM [25] typically leads to a matrix of non-symmetric coefficients though the original problems are
self-adjoint and strictly elliptic. This reduces the number of standard fast solvers that can be utilized with
IIM and convergence may not be rigorously guaranteed [18]. To address this problem, a maximum prin-
ciple preserving IIM was proposed by Li and Ito [29] to attain a diagonally dominant albeit still non-
symmetric coefficient matrix. Specially designed multigrid solvers can then be employed to speed up the
convergence of the maximum principle preserving IIM [1,2]. For interface problems with piecewise constant
coefficient, a fast IIM was constructed [26] through introducing an unknown jump condition for [un]. To-
gether with the elliptic equation, this unknown will also be solved numerically. The success of the fast IIM
lies in the fact that the IIM models the jump conditions of [u] and [un] by using the standard FD scheme
with a correction term in 2D. As a result, various standard fast Poisson solvers can be applied. Motivated
by the fast IIM [26], an explicit jump IIM was developed by Wiegmann and Bube [51]. Recently, a decom-
posed IIM for elliptic equations with variable coefficients was proposed by Berthelsen [5]. The linear sys-
tems in two IIMs [51,5] are all symmetric and diagonally dominant, allowing the use of conventional
fast Poisson solvers.

Another popular sharp interface scheme using the Cartesian grid is the ghost fluid method (GFM) origi-
nally developed for treating contact discontinuities in the inviscid Euler equations byOsher and his coworkers
[12]. TheGFM is typically first-order accurate for interface problems, including the elliptic one [35] and could
be of second-order accuracy for elliptic irregular domain problems. In the flavor of the level set method which
gives an implicit representation of the interface, the interface jump conditions are captured implicitly by
extending values across the interface into a ghost fluid. On irregular grid points, when the FD discretized
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Laplacian refers to a node from the other side of the interface, a ghost fluid value instead of the real one will be
supplied. Such a jump condition capturing procedure is directly incorporated into the numerical discretization
in away that the symmetry of theFDcoefficientmatrix ismaintained, allowing the use of standard fast solvers.
In higher dimensions, the jump in the normal derivative is correctly captured through aprojection toCartesian
coordinate directions in theGFM,while the jump in the tangential derivatives is neglected [35]. Then theGFM
can be applied dimension by dimension. The GFM is very simple and robust, and its practical extensions to
complex interface problems such as 3D moving interfaces or the multiphase Navier–Stokes equations are
promising. Recently, an interesting jump condition capturing FD scheme was constructed by Wang [48] by
using a body-fitting curvilinear coordinate system.

The idea of fictitious points or ghost domain is also used in the literature for solving elliptic irregular
domain problems by Mayo [37,38] in 1980s. The ghost cell is introduced outside the (inner) domain as a
fictitious domain. Similar ideas have been explored in [22,45], but the fictitious values are smoothly ex-
tended or extrapolated according to the given jump conditions. In the discrete singular convolution
(DSC) algorithm [49], fictitious points are used to satisfy boundary conditions [54].

The objective of the present paper is to introduce a matched interface and boundary (MIB) method for
solving elliptic equations with discontinuous coefficients and singular sources. The MIB method is formu-
lated based on our previous interface scheme, the hierarchical derivative matching [52,53], originally de-
signed for electromagnetic wave propagation and scattering in inhomogeneous media. It has achieved
over 12th-order of accuracy for solving Maxwell�s equations with discontinuities in material permittivity.
This high order interface approach has also been applied as a boundary scheme for the treatment some gen-
eral or complex boundary conditions, such as free edge supports in structural analysis [54]. Unlike the IIM
and GFM, the MIB disassociates the discretization of partial differential equations (PDEs) from enforcing
the jump conditions. Moreover, it repeatedly uses only the lowest order jump conditions in an iterative
manner, so as to avoid the challenge of handling cross derivatives arisen from high order jump conditions.
The MIB modeling is systematically carried out and can be made to arbitrarily high order, in principle. For
straight interfaces, up to 16th-order MIB schemes are constructed. For practical curve interfaces, construct-
ing schemes that exceed second-order is usually difficult on the Cartesian grid. In the present work, we dem-
onstrate second-, fourth- and sixth-order MIB schemes for elliptic equations with irregular immersed
interfaces and/or immersed boundary.

The rest of this paper is organized as follows. In Section 2, we first formulate the MIB scheme for elliptic
equations with regular interfaces. The treatment of general, irregular interfaces is developed based the same
set of ideas. The source of the local truncation error and its order is analyzed in details. Sections 3 and 4 are
devoted to extensive numerical test and validation of the proposed MIB method for regular and irregular
elliptic interface problems, respectively. To have a detailed comparison, the IIM of LeVeque and Li [25] is
regenerated in the present study. A discussion on the similarity and difference between MIB method and
other interface methods, i.e., the IIM and GFM, is given in Section 5. A conclusion remark ends this paper.
2. Theory and algorithm

In this section, we propose the matched interface and boundary (MIB) method for solving elliptic equa-
tions based on the MIB scheme originally constructed for time-domain Maxwell�s equations. Regular and
irregular interfaces are treated in the following two subsections, respectively.

2.1. Regular interfaces

For regular interfaces, i.e., straight lines in two-dimensional (2D) problems or planes in three-dimen-
sional (3D) problems, which are aligned to a Cartesian coordinate direction, the proposed MIB approach
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in principle can be made to be arbitrarily high order. To illustrate the idea, we start with a general one-
dimensional (1D) model problem
ðbuxÞx � ju ¼ q. ð3Þ

The domain is the unit interval [0, 1] with the Dirichlet, Neumann or Robin boundary conditions. We as-
sume that the coefficient b is a piecewise constant, i.e., b = b� if x < a and b = b+ if x > a, and j and q may
also be discontinuous, or even singular, at x = a. Mathematically, these discontinuities can be accounted
via two general jump conditions
½u� ¼ uþ � u� ¼ /; ½bux� ¼ bþuþx � b�u�x ¼ w. ð4Þ

A universal rule for all matched interface approaches is that to approximate a derivative on one side of an
interface, one never directly refers to function values from the other side of the interface. Jump conditions
must be embedded into such a derivative approximation, in order to avoid accuracy reduction.

With jump conditions (4), the model problem (3) can be stated alternatively to be
ðbuxÞx � ju ¼ q; x 2 ð0; aÞ [ ða; 1Þ. ð5Þ

It is noted that then in each subdomain excluding the interface a, the coefficients and source terms of the
PDE are continuous. By treating the jump conditions (4) as boundary conditions, this alternative statement
allows a domain decomposition treatment of the original problem, which motivates the development of the
MIB approach.

In all matched interface approaches, one first distinguishes the irregular grid points from regular ones.
The irregular grid points are those points on which a standard finite difference (FD) approximation to the
derivative would refer to grid points not all from the same side of interface. Without the loss of generality,
we assume the length of the differential stencil under consideration to be 2M + 1. Then there would be M
irregular grid points on each side of the interface. In the MIB method, if the derivative approximation at
these irregular grid points refers to points from the other side of the interface, the fictitious values in place
of real ones will be supplied. Thus, there should beM fictitious points (FPs) on each side of the interface, or
a total of 2M FPs. To determine fictitious values on these 2M FPs by using jump conditions (4), functions
values on 2L original grid points on both sides of the interface will be involved in the MIB approach, see
Fig. 1. We denote the function values of u at the original points and FPs as gi and fi, respectively. For sim-
plicity, a uniform grid is assumed in the present discussion, albeit non-uniform grids can be used as well.

In the MIB method, the fictitious values are determined in an iterative manner, which involves repeated
use of the lowest order jump conditions. In the first step, we seek to determine two fictitious values f1 and f2
as shown in Fig. 1, by discretizing two jump conditions (4)
XL
i¼1

w�
0;igi þ w�

0;Lþ1f2 ¼ wþ
0;1f1 þ

XLþ1

i¼2

wþ
0;igLþi�1 � ½u�; ð6Þ

b�
XL
i¼1

w�
1;igi þ w�

1;Lþ1f2

 !
¼ bþ wþ

1;1f1 þ
XLþ1

i¼2

wþ
1;igLþi�1

 !
� ½bux�; ð7Þ
where w�
j;i and wþ

j;i for i = 1, . . .,L + 1 and j = 0,1 are one-sided FD weights for left and right subdomains.
Here the subscript j represents (zeroth-order) interpolation or first-order derivative approximation, and i is
for grid index. These weights can be conveniently generated through a call into a small subroutine presented
in [14]. In general, in order to make sure that the whole scheme to be of pth order accuracy, the FD approx-
imation in interface matching should be at least pth order accurate. Thus, in Eqs. (6) and (7), we employ
one-sided FD weights with L grid points from the other side of the interface, as illustrated in Fig. 1, to
achieve high order. Two unknowns f1 and f2 can be simply solved from the resulting two algebraic equa-
tions (6) and (7).
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Fig. 1. Illustration of fictitious and original grid points used in the MIB approaches. The FPs are shown as open circles, while the
original grid points are shown as filled circles.
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It is clear that the MIB method does not explicitly employ the Taylor expansion to enforce jump con-
ditions. Nevertheless, we note that in fact the standard FD approximation can be theoretically formulated
based on the Taylor expansion. The advantage of the present matched interface scheme lies in that all com-
putations including FD weight generations are carried out automatically via a Fortran code, without
involving any manual derivation. Thus, it can be extended easily to as high order as one wishes by appro-
priately choosing M, L and corresponding FD schemes.

To achieve higher order, we can determine two more fictitious values by enforcing the previous two jump
conditions (4) again, see the second stage of Fig. 1. It is noted that f1 and f2 have already been determined
from the first step and are treated as knowns. The grid partition is chosen to still have L nodes from one
side, but 2 FPs from the other side of the interface (Of course, one might fix the total length of grid partition
as L + 1 as well). Thus, this partition is independent of the previous one. By similarly discretizing jump
conditions again, two new unknowns f3 and f4 can be determined via
XL
i¼1

~w�
0;igi þ ~w�

0;Lþ1f2 þ ~w�
0;Lþ2f4 ¼ ~wþ

0;1f3 þ ~wþ
0;2f1 þ

XLþ2

i¼3

~wþ
0;igLþi�2 � ½u�; ð8Þ

b�
XL
i¼1

~w�
1;igi þ ~w�

1;Lþ1f2 þ ~w�
1;Lþ2f4

 !
¼ bþ ~wþ

1;1f3 þ ~wþ
1;2f1 þ

XLþ2

i¼3

~wþ
1;igLþi�2

 !
� ½bux�. ð9Þ
Note that the FD weights ~w�
j;i and ~wþ

j;i here are different from those in Eqs. (6) and (7), and computationally,
one needs to regenerate them.

This procedure can be easily extended to higher orders. All the 2M FPs can be generated iteratively,
from inner to outer. See Fig. 1. Moreover, since the fictitious values are systematically solved, the present
interface modeling can be made up to arbitrarily high order in principle. In general, the proposed MIB
scheme can be applied to any higher order FD scheme to restore its full accuracy. In the present study,
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the standard higher order central FD kernel will be employed as the basic differentiation kernel throughout
the domain, albeit upwind schemes can also be used, if desirable. Thus, the present MIB method automat-
ically reduces to the standard FD scheme when the material interfaces are absent.

The MIB method outlined above could be applied to an initial value problem [52], in which field values gi
[i.e., u(x)] are available. However, for solving boundary value or eigenvalue problems, an implicit version of
the MIB has to be considered. To this end, we introduce a fundamental representation [52]
fi ¼ Ci �G; for i ¼ 1; 2; . . . ; 2M ; ð10Þ

where vector G = (g1, . . .,g2L, [u], [bux]) and the elements of vector Ci are the expansion coefficients of fi with
respect to G. With this representation, instead of solving fi, one needs to determine Ci. The representation
coefficients Ci will be determined from essentially the same procedure presented above for fi. The only dif-
ference is that now one jump condition is discretized and spanned into 2L + 2 algebraic equations, since a
fictitious value fi is represented via 2L + 2 coefficients which are the 2L + 2 elements of Ci.

To better illustrate the MIB approach, we next present detailed MIB formulation for a fourth-order FD
scheme with the half-length of the differential stencil being M = 2. Thus, there are a total of 2M = 4 FPs.
To ensure at least fourth-order accuracy in the MIB modeling, we choose L = 4. Consequently,
G = (g1, . . .,g8, [u],bux]). By denoting Ii as a unit vector with its ith element being 1 and other 2L + 1 ele-
ments being 0, we have
gi ¼ Ii �G; for i ¼ 1; 2; . . . ; 2L; ½u� ¼ I2Lþ1 �G; ½bux� ¼ I2Lþ2 �G. ð11Þ

By using the representation (10) and (11), the discretized jump conditions (6) and (7) in the first MIB step
are given as
X4

i¼1

w�
0;iI

i þ w�
0;5C

2 ¼ wþ
0;1C

1 þ
X5
i¼2

wþ
0;iI

3þi � I9 þOðh5Þ; ð12Þ

b�
X4
i¼1

w�
1;iI

i þ w�
1;5C

2

 !
¼ bþ wþ

1;1C
1 þ

X5
i¼2

wþ
1;iI

3þi

 !
� I10 þOðh4Þ; ð13Þ
in which the common factor G has been cancelled. Two fictitious values can be solved as
C1 ¼
b�w�

1;5K1 � w�
0;5K2

bþwþ
1;1w

�
0;5 � b�w�

1;5w
þ
0;1

; ð14Þ

C2 ¼
bþwþ

1;1K1 � wþ
0;1K2

bþwþ
1;1w

�
0;5 � b�w�

1;5w
þ
0;1

; ð15Þ
where
K1 ¼
X5
i¼2

wþ
0;iI

3þi �
X4
i¼1

w�
0;iI

i � I9;

K2 ¼ bþ
X5
i¼2

wþ
1;iI

3þi � b�
X4
i¼1

w�
1;iI

i � I10.
Similarly, in the second (final) step, Eqs. (8) and (9) become
X4
i¼1

~w�
0;iI

i þ ~w�
0;5C

2 þ ~w�
0;6C

4 ¼ ~wþ
0;1C

3 þ ~wþ
0;2C

1 þ
X6
i¼3

~wþ
0;iI

2þi � I9 þOðh5Þ; ð16Þ

b�
X4
i¼1

~w�
1;iI

i þ ~w�
1;5C

2 þ ~w�
1;6C

4

 !
¼ bþ ~wþ

1;1C
3 þ ~wþ

1;2C
1 þ

X6
i¼3

~wþ
1;iI

2þi

 !
� I10 þOðh4Þ. ð17Þ
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The fictitious values f3 and f4 can be solved as
C3 ¼
b�~w�

1;6
~K1 � ~w�

0;6
~K2

bþ~wþ
1;1~w

�
0;6 � b�~w�

1;6~w
þ
0;1

; ð18Þ

C4 ¼
bþ~wþ

1;1
~K1 � ~wþ

0;1
~K2

bþ~wþ
1;1~w

�
0;6 � b�~w�

1;6~w
þ
0;1

; ð19Þ
where
~K1 ¼
X6
i¼3

~wþ
0;iI

2þi �
X4
i¼1

~w�
0;iI

i þ ~wþ
0;2C

1 � ~w�
0;5C

2 � I9;

~K2 ¼ bþ
X6
i¼3

~wþ
1;iI

2þi � b�
X4
i¼1

~w�
1;iI

i þ bþ~wþ
1;2C

1 � b�~w�
1;5C

2 � I10.
For elliptic interface problems with regular interfaces, the extension of the MIB approach to higher
dimensions is straightforward. For example, we consider the following 2D model problem
ðbuxÞx þ ðbuyÞy � bju ¼ �q; ðx; yÞ 2 ½0; 1� � ½0; 1� ð20Þ
with proper boundary conditions given on boundaries of the domain. Suppose along the y-direction the
media are homogeneous, while along the x-direction, b could take different values
b ¼
b1; 0 6 x < a; 0 6 y 6 1;

b2; a 6 x 6 1; 0 6 y 6 1.

�
ð21Þ
Since now the normal direction n is on the Cartesian coordinate directions, jump conditions read
½u� ¼ /ðxÞ; ½bun� ¼ ½bux� ¼ wðxÞ; ð22Þ

which are essentially Eq. (4). Thus, the 1DMIB approaches can be directly applied to the present 2D model
problem to restore the FD approximations along the x-direction, while the standard FD scheme will be
applied along the y-direction. Obviously, for a 3D problem with cubic domain and discontinuities of the
diffusion coefficient taking place only along the Cartesian directions, the MIB approach can also be directly
employed to recover the full accuracy of the FD method.

2.2. Irregular interfaces

In this subsection, we formulate the MIB scheme for solving elliptic equations with irregular (curved)
interfaces, while our previous MIB method was constructed only for regular interfaces. It is much more
intricate to treat irregular interfaces because the local topology of irregular points may vary from point
to point. Therefore, the procedure outlined for regular interfaces cannot be directly applied. To better illus-
trate the new MIB scheme, we mainly focus our description on 2D elliptic problems given in Eq. (3). The
formalism of the proposed MIB approach for 3D problems and other elliptic equations is very similar. A
second-order MIB method and its generalization to higher orders are described in the rest of this
subsection.

2.2.1. A second-order scheme for irregular interfaces

Before proceeding to the construction of the MIB scheme for (bux)x or (buy)y, we identify irregular grid
points since only these points necessitate special care when the standard central difference scheme is applied
to the whole domain. We define the irregular point as the one at which all the discretization points in a
standard central FD scheme are not on the same side of an interface. For example, in a second-order
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2D scheme, an irregular point has at least one of its 4 nearest neighbor grid points laying on the other side
of the interface. Note that the number of irregular points increases when a higher order FD scheme is
employed.

Assume as before that there are two given conditions associated with the interface, i.e.,
½u� ¼ uþ � u� ¼ /ðx; yÞ; ð23Þ
½bun� ¼ bþuþn � b�u�n ¼ wðx; yÞ ð24Þ
and also assume that both /(x,y) and w(x,y) are C1 continuous along the interface C. When considering the
interface which is not always aligned with the x- or y-mesh lines, as what shown by Fig. 3, one more inter-
face condition can be attained by differentiating Eq. (24) along the tangential direction of the interface, i.e.
[us] = /s(x,y) , q(x,y). Hence, for a point (xo,yo) on the interface, we have three jump conditions,
½u� ¼ uþ � u� ¼ /ðxo; yoÞ; ð25Þ
½us� ¼ uþs � u�s ¼ qðxo; yoÞ; ð26Þ
½bun� ¼ bþuþn � b�u�n ¼ wðxo; yoÞ; ð27Þ
where normal vector of the interface ~n ¼ ðcos h; sin hÞ and us is the derivative in the tangential direction
~s ¼ ð� sin h; cos hÞ, while 0 6 h < 2p is the angle between positive x-direction and the vector~n. Considering
these relations, the above three local interface conditions can be reformulated as
½u� ¼ uþ � u� ¼ /ðxo; yoÞ; ð28Þ
½us� ¼ ð�uþx sin hþ uþy cos hÞ � ð�u�x sin hþ u�y cos hÞ ¼ qðxo; yoÞ; ð29Þ
½bun� ¼ bþðuþx cos hþ uþy sin hÞ � b�ðu�x cos hþ u�y sin hÞ ¼ wðxo; yoÞ. ð30Þ
In the MIB approach, the implementation of jump conditions is disassociated with the discretization of
the elliptic equation. Also (bux)x and (buy)y will be treated separately. Therefore, we only need to illustrate
how to locally recover the second-order accuracy of the standard 3-point FD scheme for (bux)x. The mod-
eling for (buy)y can be achieved similarly. Considering an interface point o = (xo,yo) which is located at the
intersection of interface C and the x-mesh line, see Fig. 3, one fictitious point on each side of (xo,yo) is re-
quired in the present MIB modeling. To estimate these two fictitious values we will discretize uþ; u�; uþx and
u�x involved in the jump conditions by using a 1D grid partition as in the regular interface cases. However,
difficulty arise as how to deal with two derivatives uþy and u�y in the jump conditions (29) and (30) at the
interface point (xo,yo). We overcome this difficulty via essentially two steps: first, by using jump conditions
(29) and (30), we eliminate one y derivative that is more difficult to discretized at the interface; second, we
carry out the discretization for the remaining y-derivative by using a one-sided FD scheme on the auxiliary
points whose values are obtained by interpolation.

This is always possible in practice. If uþy is easier to be evaluated, one will cancel u�y from (29) and (30) to
attain
½u� ¼ uþ � u�; and ½bun� � b� tan h½us� ¼ Cþ
x u

þ
x � C�

x u
�
x þ Cþ

y u
þ
y ; ð31Þ
where Cþ
x ¼ bþ cos hþ b� tan h sin h, C�

x ¼ b� cos hþ b� tan h sin h and Cþ
y ¼ bþ sin h� b� sin h. If other-

wise u�y is easier to be calculated, one shall use the following jump conditions derived from Eqs. (28)–(30) by
cancelling uþy :
½u� ¼ uþ � u�; and ½bun� � bþ tan h½us� ¼ Cþ
x u

þ
x � C�

x u
�
x � C�

y u
�
y ; ð32Þ
where Cþ
x ¼ bþ cos hþ bþ tan h sin h, C�

x ¼ b� cos hþ bþ tan h sin h and C�
y ¼ b� sin h� bþ sin h.

Cancellation of uþx or u�x from Eqs. (29) and (30) is required when modeling (buy)y, which leads to an-
other two combinations of jump conditions. One combination is
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½u� ¼ uþ � u�; and ½bun� þ b� cot h½us� ¼ Cþ
x u

þ
x þ Cþ

y u
þ
y � C�

y u
�
y ; ð33Þ
where Cþ
x ¼ ðbþ � b�Þ cos h, Cþ

y ¼ b� cos h cot hþ bþ sin h and C�
y ¼ b�ðcos h cot hþ sin hÞ; and the other

is
½u� ¼ uþ � u� and ½bun� þ bþ cot h½us� ¼ C�
x u

�
x þ Cþ

y u
þ
y � C�

y u
�
y . ð34Þ
It is easy to check that here C�
x ¼ ðbþ � b�Þ cos h, C�

y ¼ bþ cos h cot hþ b� sin h and Cþ
y ¼ bþðcos h cot hþ

sin hÞ. Either Eq. (33) or Eq. (34) can be chosen to formulate the discretization scheme for (buy)y, depending
on if uþx or u�x is easier to be evaluated.

In the case that either tanh or coth is undefined in choosing jump conditions, i.e., whenever the outer
normal direction is aligned to x- or y-direction, the interface is locally perpendicular to the mesh line so
that it can be treated as a straight interface locally. The procedure introduced in the preceding subsection
for the straight interface can be directly employed to handle these irregular points.

From the above discussion, it can be seen that for irregular interfaces each irregular point should have its
own local MIB representation because of different local topology, while for regular interface cases, in con-
trast, only one global MIB representation is needed throughout the whole domain. Some typical topology
near irregular points is depicted in Fig. 2.

We first consider the detailed discretization of jump conditions (31) at the interface point (xo,yo) for the
topology given in Fig. 3, where the interface C passes through two irregular points (i, j) and (i + 1,j) at
(xo,yo). Four nodes along the jth mesh line, i.e., (i � 1, j), (i, j), (i + 1, j) and (i + 2, j), are required to approx-
imate x-derivatives in jump conditions (31). In order to evaluate uþy at (xo,yo) = (xo,yj), we add an auxiliary
y-mesh (dashed line) passing through (xo,yo). Three auxiliary grid points on this auxiliary line will be em-
ployed to approximate uþy . Two of these three points, (o, j + 1) and (o, j + 2) are on the positive side of the
interface, while the third auxiliary point (o, j) is right on the interface.

Refer again to Fig. 3, where point (i � 1,j) and (i, j) are on the same side of the interface while (i + 1, j),
(i + 2, j), (o, j + 1) and (o, j + 2) are on the other side. We deploy two fictitious points at both points (i, j) and
(i + 1, j), the corresponding fictitious unknowns are denoted as fi,j and fi+ 1, j, respectively. Two conditions
in Eq. (31) are then approximated as
w�
0;i�1ui�1;j þ w�

0;iui;j þ w�
0;iþ1fiþ1;j þ ½u� ¼ wþ

0;ifi;j þ wþ
0;iþ1uiþ1;j þ wþ

0;iþ2uiþ2;j þOðh3Þ; ð35Þ
C�

x ðw�
1;i�1ui�1;j þ w�

1;iui;j þ w�
1;iþ1fiþ1;jÞ þ ½bun� � b� tan h½us�

¼ Cþ
x ðwþ

1;ifi;j þ wþ
1;iþ1uiþ1;j þ wþ

1;iþ2uiþ2;jÞ þ Cþ
y ðpþ1;juþo;j þ pþ1;jþ1uo;jþ1 þ pþ1;jþ2uo;jþ2Þ þOðh2Þ; ð36Þ
where superscripts, � and +, signify that the FD approximation is on the � and + side of the interface,
respectively. Here w and p are FD weights for approximation along the x- and y-directions, respectively.
(i,j)

A

B

(i,j)
A

(i,j)

A

a b c

Three typical situations for an interface crossing the mesh lines. In the left chart, the interface passes the x-mesh line at point A
mesh line at point B. The interface conditions are approximated at point A and point B to generate the difference scheme for
and (buy)y, respectively. In the middle chart, the interface conditions are approximated at point A to obtain the difference scheme
r (bux)x and the regular central difference is used for (buy)y. In the right chart, the difference scheme for (buy)y is built from the
imation of the interface conditions at point B while term (bux)x is treated with the regular central difference.



Fig. 3. Irregular point (i, j) and the interface. The interface crosses the x- mesh line at (xo,yo). The vertical dash line is the auxiliary line
on which three auxiliary points (in empty circle) are defined: (o,j + 2),(o,j + 1) and (o,j) right at (xo,yo). The jumps [u], [bun] and [us] are
evaluated at (xo,yo).
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Their first subscript (0 or 1) represents either interpolation or first-order derivative, while their second sub-
script is for node index. For example, w�

0;i�1; w�
0;i and w�

0;iþ1 are the interpolation weights of u�(xo,yo) at grid
points (i � 1,j), (i, j) and (i + 1,j).

As aforementioned, uþy shall be approximated on a one-sided finite difference stencil comprising of three
auxiliary points, i.e., uþo;j; uo;jþ1 and uo,j+2, which need further numerical treatment. To relate uþo;j with func-
tion values at real grid points we adopt the relation
uþo;j ¼ u�o;j þ ½u� ¼ w�
0;i�1ui�1;j þ w�

0;iui;j þ w�
0;iþ1fiþ1;j þ ½u� þOðh3Þ. ð37Þ
The other two auxiliary values, uo,j+1 and uo,j+2 are interpolated with three grid points around them to en-
sure an accuracy of O(h3). These interpolation points are chosen a priori, and should be on the same side of
the interface. Here, we choose interpolation points to be (i, j + 1), (i + 1,j + 1), (i + 2,j + 1) and (i, j + 2),
(i + 1, j + 2), (i + 2, j + 2) for uo,j+1 and uo,j+2, respectively. As a result, uo,j+1 and uo,j+2 become known val-
ues in jump condition (36).

There are only two unknowns in Eqs. (35) and (36), i.e., fictitious values fi,j and fi+1,j. To solve for the
representation of these fictitious values in terms of the real function values and the known jumps, we intro-
duce two expansions
fi;j ¼ Ci �U; ð38Þ
fiþ1;j ¼ Ciþ1 �U; ð39Þ
where Ci ¼ ðCi
1;C

i
2; . . . ;C

i
9Þ and Ciþ1 ¼ ðCiþ1

1 ;Ciþ1
2 ; . . . ;Ciþ1

9 Þ are the expansion coefficients of two fictitious
unknowns with respect to 6 real unknowns and 3 jumps which are also given by the vector U = (ui�1, j,ui,j,
ui+1,j,ui+2,j,uo,j+1,uo,j+2, [u], [bun], [us]). Insert these expansions of fi,j and fi+1,j to Eqs. (35) and (36), we end
up with a small linear system for vectors Ci and Ci+1:
w�
0;iþ1C

iþ1 �U� wþ
0;iC

i �U ¼ K1 �U; ð40Þ
ðC�

x w
�
1;iþ1 � Cþ

y p
þ
1;jw

�
0;iþ1ÞC

iþ1 �U� Cþ
x w

þ
1;iC

i �U ¼ K2 �U; ð41Þ
or further
w�
0;iþ1C

iþ1 � wþ
0;iC

i ¼ K1; ð42Þ
ðC�

x w
�
1;iþ1 � Cþ

y p
þ
1;jw

�
0;iþ1ÞC

iþ1 � Cþ
x w

þ
1;iC

i ¼ K2; ð43Þ
where vector
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K1 ¼ ð�w�
0;i�1;�w�

0;i;w
þ
0;iþ1;w

þ
0;iþ2; 0; 0;�1; 0; 0Þ;

K2 ¼ ð�C�
x w

�
1;i�1 þ Cþ

y p
þ
1;jw

�
0;i�1;�C�

x w
�
1;i þ Cþ

y p
þ
1;jw

�
0;i;C

þ
x w

þ
1;iþ1;C

þ
x w

þ
1;iþ2;C

þ
y p

þ
1;jþ1;

Cþ
y p

þ
1;jþ2;C

þ
y p

þ
1;j;�1; b� tan hÞ.
The solution of this 2 · 2 linear system is readily available with Cramer�s formula:
Ci ¼
w�

0;iþ1K2 � ðC�
x w

�
1;iþ1C

þ
y p

þ
1;jw

�
0;iþ1ÞK1

�Cþ
x w

þ
1;iw

�
0;iþ1 þ wþ

0;iðC�
x w

�
1;iþ1C

þ
y p

þ
1;jw

�
0;iþ1Þ

; ð44Þ

Ciþ1 ¼
�Cþ

x w
þ
1;iK1 þ wþ

0;iK2

�Cþ
x w

þ
1;iw

�
0;iþ1 þ wþ

0;iðC�
x w

�
1;iþ1C

þ
y p

þ
1;jw

�
0;iþ1Þ

. ð45Þ
Before finishing the seeking of the fictitious values, we need to distribute the expansion weights of fi,j and
fi+1,j at auxiliary points uo,j+1 and uo,j+2 to their respective interpolation points defined above. Suppose
uo,j+1 = Ij+1 Æ (ui,j+1,ui+1,j+1,ui+2,j+1) + O(h3) and uo,j+2 = Ij+2 Æ (ui,j+2,ui+1,j+2,ui+2,j+2) + O(h3), where

Ijþ1 ¼ ðIjþ1
1 ; Ijþ1

2 ; Ijþ1
3 Þ and Ijþ2 ¼ ðIjþ2

1 ; Ijþ2
2 ; Ijþ2

3 Þ are the interpolation coefficients in the vector form. The
expansion weights of fi,j and fi+1,j could then be distributed onto these interpolation points and the final
expressions of fi,j and fi+1,j are:
fi;j ¼ Ci
1ui�1;j þ Ci

2ui;j þ Ci
3uiþ1;j þ Ci

4uiþ2;j þ Ci
5ðI

jþ1
1 ui;jþ1 þ I

jþ1
2 uiþ1;jþ1 þ I

jþ1
3 uiþ2;jþ1Þ

þ Ci
6ðI

jþ2
1 ui;jþ2 þ I

jþ2
2 uiþ1;jþ2 þ I

jþ2
3 uiþ2;jþ2Þ þ Ci

7½u� þ Ci
8½bun� þ Ci

9½us�; ð46Þ
fiþ1;j ¼ Ciþ1

1 ui�1;j þ Ciþ1
2 ui;j þ Ciþ1

3 uiþ1;j þ Ciþ1
4 uiþ2;j þ Ciþ1

5 ðIjþ1
1 ui;jþ1 þ Ijþ1

2 uiþ1;jþ1 þ Ijþ1
3 uiþ2;jþ1Þ

þ Ciþ1
6 ðIjþ2

1 ui;jþ2 þ Ijþ2
2 uiþ1;jþ2 þ Ijþ2

3 uiþ2;jþ2Þ þ Ciþ1
7 ½u� þ Ciþ1

8 ½bun� þ Ciþ1
9 ½us�. ð47Þ
With these two expansions of fi,j and fi+1,j, one could discretize (bux)x at irregular points (i, j) and (i + 1,j) as
at the regular point:
ðbuxÞx ¼
b�
i�1

2;j

ðDxÞ2
ui�1;j �

b�
i�1

2;j
þ b�

iþ1
2;j

ðDxÞ2
ui;j þ

b�
iþ1

2;j

ðDxÞ2
fiþ1;j at ði; jÞ; ð48Þ

ðbuxÞx ¼
bþ
iþ1

2;j

ðDxÞ2
fi;j �

bþ
iþ1

2;j
þ bþ

iþ3
2;j

ðDxÞ2
uiþ1;j þ

bþ
iþ3

2;j

ðDxÞ2
uiþ2;j at ðiþ 1; jÞ; ð49Þ
by substituting the above expansions of fi,j and fi+1,j. The known terms involving [u], [us] and [bux] should be
collected and contribute to the right-hand vector B in the final linear system Ax = B from which the elliptic
equation is eventually solved.

The difference scheme for (buy)y can be generated following the procedure similar to that for (bux)x. Let
(i, j) and (i, j + 1) be a pair of irregular points and between them the interface C intersects with the ith mesh
line at (xo,yo), see Fig. 4. We need two fictitious points, fi,j at point (i, j) and fi,j+1 at (i, j + 1), to facilitate the
discretization of (buy)y at (i, j) and (i, j + 1). Jump conditions, Eq. (34), is chosen and is approximated at the
intersect point (xo,yo). Considering the fact that we do not have real grid points to directly approximate u�x ,
a horizontal auxiliary mesh line passing (xo,yo) is introduced and three auxiliary points, (i�2,o),(i � 1,o)
and (i,o), are deployed on which a one-sided finite difference scheme for u�x is formulated. Jump conditions
(34) are then replaced by the following approximate equations:
p�0;j�1ui;j�1 þ p�0;jui;j þ p�0;jþ1fi;jþ1 þ ½u� ¼ pþ0;jfi;j þ pþ0;jþ1ui;jþ1 þ pþ0;jþ2ui;jþ2 þOðh3Þ; ð50Þ
C�

y ðp�1;j�1ui;j�1 þ p�1;jui;j þ p�1;jþ1fi;jþ1Þ þ ½bun� þ bþ cot h½us�
¼ Cþ

y ðpþ1;jfi;j þ pþ1;jþ1ui;jþ1 þ pþ1;jþ2ui;jþ2Þ þ C�
x ðw�

1;i�2ui�2;o þ w�
1;i�1ui�1;o þ w�

1;iu
�
i;oÞ þOðh2Þ. ð51Þ



Fig. 4. Irregular point (i, j) and the interface. The interface crosses the y-mesh line at (xo,yo). The dash horizontal line is the auxiliary
line on which three auxiliary points (in empty circle) are defined: (i�2,o), (i � 1,o) and (i,o) right at (xo,yo). The jumps [u], [bun] and [us]
are evaluated at the intersect point (xo,yo).

Y.C. Zhou et al. / Journal of Computational Physics 213 (2006) 1–30 13
The notations used here follow the same rule as that in Eqs. (35) and (36). The auxiliary point on the inter-
face, u�i;o, is not at a grid point so we relate it with the unknowns at grid points by an interpolation:
u�i;o ¼ uþi;o � ½u� ¼ pþ0;jfi;j þ pþ0;jþ1ui;jþ1 þ pþ0;jþ2ui;jþ2 � ½u� þOðh3Þ. ð52Þ
Nevertheless the interpolation on points ui,j�1, ui,j and fi,j+1 is also applicable. With this relation, Eq. (51) is
changed into
C�
y ðp�1;j�1ui;j�1 þ p�1;jui;j þ p�1;jþ1fi;jþ1Þ þ ½bun� þ bþ cot h½us�
¼ Cþ

y ðpþ1;jfi;j þ pþ1;jþ1ui;jþ1 þ pþ1;jþ2ui;jþ2Þ þ C�
x ½w�

1;i�2ui�2;o þ w�
1;i�1ui�1;o

þ w�
1;iðpþ0;jfi;j þ pþ0;jþ1ui;jþ1 þ pþ0;jþ2ui;jþ2 � ½u�Þ�. ð53Þ
Also, we are interested in the representations of two fictitious values fi,j and fi,j+1 with respect to the known
jumps and real unknowns, i.e.,
fi;j ¼ Cj �U; ð54Þ
fi;jþ1 ¼ Cjþ1 �U; ð55Þ
where U = (ui,j�1,ui,j,ui,j+1,ui,j+2,uo,i�2,uo,i�1, [u], [bun], [us]) and the elements of vector Cj, Cj+1 are the
expansion coefficients of fi,j and fi,j+1 with respect to U, respectively. A 2 · 2 linear system for Ci and
Cj+1 can be obtained by replacing fi,j and fi,j+1 in Eqs. (50) and (53) with above representations, as follows
p�0;jþ1C
jþ1 �U� pþ0;jC

j �U ¼ K1 �U; ð56Þ
C�

y p
�
1;jþ1C

jþ1 �U� ðCþ
y p

þ
1;j þ C�

x w
�
1;ip

þ
0;jÞC

j �U ¼ K2 �U. ð57Þ
It is easy to verify that
K1 ¼ ð�p�0;j�1;�p�0;j; p
þ
0;jþ1; p

þ
0;jþ2; 0; 0;�1; 0; 0Þ;

K2 ¼ ð�C�
y p

�
1;j�1;�C�

y p
�
1;j;C

þ
y p

þ
1;jþ1 þ C�

x w
�
1;ip

þ
0;jþ1;C

þ
y p

þ
1;jþ2 þ C�

x w
�
1;ip

þ
0;jþ2;

C�
x w

�
1;i�2;C

�
x w

�
1;i�1;�C�

x w
�
1;i;�1;�bþ cot hÞ.
Once dropping the vector U from the above system, we obtain the solution of the system again by Cramer�s
formula:
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Cj ¼
�ðCþ

y p
þ
1;j þ C�

x w
�
1;ip

þ
0;jÞK1 þ pþ0;jK2

C�
y p

�
1;jþ1p

þ
0;j � p�0;jþ1ðCþ

y p
þ
1;j þ C�

x w
�
1;ip

þ
0;jÞ

; ð58Þ

Cjþ1 ¼
�C�

y p
�
1;jþ1K1 þ p�0;jþ1K2

C�
y p

�
1;jþ1p

þ
0;j � p�0;jþ1ðCþ

y p
þ
1;j þ C�

x w
�
1;ip

þ
0;jÞ

. ð59Þ
The expansions of Cj and Cj+1 solved from this linear system involve the unknowns at auxiliary points
uo,i�2 and uo,i�1, which are not the regular points so we also need to distribute the weights on these two
points to the regular grid points. Considering the local topology we choose grid points ui�1,j�1, ui�1,j

and ui�1,j+1 for the interpolation at auxiliary points uo,i�1, and ui�2,j�1,ui�2,j and ui�2,j+1 for uo,i�2. With
these two interpolation relations:
uo;i�1 ¼ Ii�1
1 ui�1;j�1 þ Ii�1

2 ui�1;j þ Ii�1
3 ui�1;jþ1; ð60Þ

uo;i�2 ¼ Ii�2
1 ui�2;j�1 þ Ii�2

2 ui�2;j þ Ii�2
3 ui�2;jþ1; ð61Þ
it turns out that both fi,j and fi,j+1 have the expansions in terms of unknowns at regular grid points and
known jumps, as below
fi;j ¼ C
j
1ui;j�1 þ C

j
2ui;j þ C

j
3ui;jþ1 þ C

j
4ui;jþ2 þ C

j
5ðIi�1

1 ui�1;j�1 þ Ii�1
2 ui�1;j þ Ii�1

3 ui�1;jþ1Þ
þ Cj

6ðIi�2
1 ui�2;j�1 þ Ii�2

2 ui�2;j þ Ii�2
3 ui�2;jþ1Þ þ Cj

7½u� þ Cj
8½bun� þ Cj

9½us�; ð62Þ
fi;jþ1 ¼ Cjþ1

1 ui;j�1 þ Cjþ1
2 ui;j þ Cjþ1

3 ui;jþ1 þ Cjþ1
4 ui;jþ2 þ Cjþ1

5 ðIi�1
1 ui�1;j�1 þ Ii�1

2 ui�1;j þ Ii�1
3 ui�1;jþ1Þ

þ Cjþ1
6 ðIi�2

1 ui�2;j�1 þ Ii�2
2 ui�2;j þ Ii�2

3 ui�2;jþ1Þ þ Cjþ1
7 ½u� þ Cjþ1

8 ½bun� þ Cjþ1
9 ½us�. ð63Þ
These two fictitious values make the discretization of uyy at point (i, j) and (i, j+1) straightforward
ðbuyÞy ¼
b�
i;j�1

2

ðDyÞ2
ui;j�1 �

b�
i;jþ1

2
þ b�

i;j�1
2

ðDyÞ2
ui;j þ

b�
i;jþ1

2

ðDyÞ2
fi;jþ1 at ði; jÞ; ð64Þ

ðbuyÞy ¼
bþ
i;jþ3

2

ðDyÞ2
ui;jþ2 �

bþ
i;jþ3

2
þ bþ

i;jþ1
2

ðDyÞ2
ui;jþ1 þ

bþ
i;jþ1

2

ðDyÞ2
fi;j at ði; jþ 1Þ. ð65Þ
The known terms involving [u], [us] and [bun] should also be collected and combined into the right-hand
vector in the ultimate linear system Ax = B.

The finite difference schemes constructed above are applicable regardless whether the intersection point
of the interface with the mesh line is right at the grid point. However, significant simplification can be ob-
tained if the intersection point is at a grid point. When it comes to such a case, the difference scheme for
(bux)x + (buy)y could be generated in a single run rather than separately.

Fig. 5 shows such a situation where grid point (i, j) is an intersect point. Note that when [u]6¼0 the func-
tion on the interface is not well defined but from the computational point of view the interface itself can be
regarded either as in the interior of the interface or outside of it. Here we regard it as in the interior of the
interface, i.e., u(i, j) = u�(i, j) if a grid point (i, j) is on the interface. In such a case, one only needs to take
care of the difference scheme at point (i, j) since both (i � 1,j) and (i, j � 1) are now regular points while for
(i + 1,j) and (i, j + 1) the jump in [u] can be directly incorporated to generate the difference schemes:
ðbuxÞx ¼
bþ
iþ3

2;j

ðDxÞ2
uiþ2;j �

bþ
iþ3

2;j
þ bþ

iþ1
2;j

ðDxÞ2
uiþ1;j þ

bþ
iþ1

2;j

ðDxÞ2
ðui;j þ ½u�Þ at ðiþ 1; jÞ; ð66Þ

ðbuyÞy ¼
bþ
i;jþ3

2

ðDyÞ2
ui;jþ2 �

bþ
i;jþ3

2
þ bþ

i;jþ1
2

ðDyÞ2
ui;jþ1 þ

bþ
i;jþ1

2

ðDyÞ2
ðui;j þ ½u�Þ at ði; jþ 1Þ. ð67Þ



Fig. 5. Irregular point (i, j) and the interface. The interface passes the grid point (i, j). No auxiliary lines and auxiliary points are
needed. The jumps [u], [bun] and [us] are evaluated at the point (i, j).
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For point (i, j) on the interface, however, two fictitious values, fi,j+1 and fi+1,j, are required in order to
formulate the difference schemes for (bux)x + (buy)y at point (i, j). The expansion coefficients of these two
fictitious values with respect to the unknowns at surrounding grid points and the known jumps would also
be solved from the approximation equations of the jump conditions at point (i, j). However, since the grid
point is now on the interface, the interface conditions adopted are slightly different from what we used ear-
lier. On the one hand, the interpolation representation of the jump relation for u, Eq. (28), does not involve
both fi+1,j and fi,j+1 any more so this jump condition does not provide an approximate equation for the fic-
titious values. On the other hand, two target fictitious values make the approximation possible for all deriv-
atives, uþx ; u

�
x ; u

þ
y and u�y . Therefore the cancellation of one of Eqs. (29) and (30) is no longer necessary and

these two conditions exactly provide two approximate equations for fi,j+1 and fi+1,j, as follows
� ðw�
1;i�1ui�1;j þ w�

1;iui;j þ w�
1;iþ1fiþ1;jÞ sin hþ ðp�1;j�1ui;j�1 þ p�1;jui;j þ p�1;jþ1fi;jþ1Þ cos hþ ½us�

¼ �½wþ
1;iðui;j þ ½u�Þ þ wþ

1;iþ1uiþ1;j þ wþ
1;iþ2uiþ2;j� sin hþ ½pþ1;jðui;j þ ½u�Þ þ pþ1;jþ1ui;jþ1 þ pþ1;jþ2ui;jþ2� cos h;

ð68Þ

b�ðw�
1;i�1ui�1;j þw�

1;iui;j þw�
1;iþ1fiþ1;jÞ cos hþ b�ðp�1;j�1ui;j�1 þ p�1;jui;j þ p�1;jþ1fi;jþ1Þ sin hþ ½bun�

¼ bþðwþ
1;iðui;j þ ½u�Þ þwþ

1;iþ1uiþ1 þwþ
1;iþ2uiþ2Þ cos hþ bþðpþ1;jðui;j þ ½u�Þ þ pþ1;jþ1ui;jþ1 þ pþ1;jþ2ui;jþ2Þ sin h.

ð69Þ

These two equations consist a 2 · 2 linear system for vectors Ci+1 and Cj+1, which are the respective

expansion coefficients of fictitious values fi+1,j and fi,j+1, i.e., fi+1,j = Ci+1 Æ U, fi,j+1 = Cj+1 Æ U with
U = (ui�1,j,ui,j,ui+1,j,ui+2,j,ui,j�1,ui,j+1,ui,j+2, [u], [bun], [us]). The solution of this linear system is
� w�
1;iþ1 sin hCiþ1 þ p�1;jþ1 cos hC

jþ1 ¼ K1; ð70Þ
b�w�

1;iþ1 cos hC
iþ1 þ b�p�1;jþ1 sin hCjþ1 ¼ K2; ð71Þ
where
K1 ¼ ðw�
1;i�1 sin h; ðw�

1;i � wþ
1;iÞ sin hþ ðpþ1;j � p�1;jÞ cos h;�wþ

1;iþ1 sin h;�wþ
1;iþ2 sin h;�p�1;j�1 cos h

pþ1;jþ1 cos h; p
þ
1;jþ2 cos h; p

þ
1;j cos h� wþ

1;i sin h; 0;�1Þ;
K2 ¼ ð�b�w�

1;i�1 cos h; ðb
þwþ

1;i � b�w�
1;iÞ cos hþ ðbþpþ1;j � b�p�1;jÞ sin h; bþwþ

1;iþ1 cos h;
bþwþ
1;iþ2 cos h;�b�p�1;j�1 sin h; bþpþ1;jþ1 sin h; bþpþ1;jþ2 sin h; bþðwþ

1;i cos hþ pþ1;j sin hÞ;�1; 0Þ;
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and
Ciþ1 ¼ �
b�p�1;jþ1 sin h K1 � p�1;jþ1 cos h K2

b�w�
1;iþ1p

�
1;jþ1

; ð72Þ

Cjþ1 ¼
b�w�

1;iþ1 cos h K1 þ w�
1;iþ1 sin h K2

b�w�
1;iþ1p

�
1;jþ1

. ð73Þ
Thus, we obtain the full representations of fi+1,j and fi,j+1
fiþ1;j ¼ Ciþ1
1 ui�1;j þ Ciþ1

2 ui;j þ Ciþ1
3 uiþ1;j þ Ciþ1

4 uiþ2;j þ Ciþ1
5 ui;j�1 þ Ciþ1

6 ui;jþ1

þ Ciþ1
7 ui;jþ2 þ Ciþ1

8 ½u� þ Ciþ1
9 ½bun� þ Ciþ1

10 ½us�; ð74Þ
fi;jþ1 ¼ Cjþ1

1 ui�1;j þ Cjþ1
2 ui;j þ Cjþ1

3 uiþ1;j þ Cjþ1
4 uiþ2;j þ Cjþ1

5 ui;j�1 þ Cjþ1
6 ui;jþ1

þ C
jþ1
7 ui;jþ2 þ C

jþ1
8 ½u� þ C

jþ1
9 ½bun� þ C

jþ1
10 ½us� ð75Þ
and the difference scheme for (bux)x + (buy)y at point (i, j) is
ðbuxÞx þ ðbuyÞy ¼
b�
iþ1

2;j

ðDxÞ2
fiþ1;j �

b�
iþ1

2;j
þ b�

i�1
2;j

ðDxÞ2
ui;j þ

b�
i�1

2;j

ðDxÞ2
ui�1;j þ

b�
i;jþ1

2

ðDyÞ2
fi;jþ1;�

b�
i;jþ1

2
þ b�

i;j�1
2

ðDyÞ2
ui;j þ

b�
i;j�1

2

ðDyÞ2
ui;j�1.

ð76Þ
It is noted that the representation scheme described above has a local truncation error of O(h3) so that
the central finite difference scheme for the second-order derivatives have a local truncation error of O(h) at
irregular points. As the number of irregular grid points are one-dimension lower than the number of total
grid points, the approximation error of the proposed MIB method is of O(h2), which has been verified in
our numerical tests.
2.2.2. Higher order MIB schemes for irregular interfaces

The generalization of the proposed MIB method to higher order convergence is quite straightforward. In
the present approach, a high order scheme means the use of standard high order finite difference discreti-
zations in the whole computational domain. In the vicinity of the interface, irregular grid points are first
identified according to the finite difference discretization. Then fictitious points are created at the same loca-
tions of the irregular points. The function values at fictitious points are determined by enforcing the inter-
face jump conditions. For high order schemes, the set of jump conditions is repeatedly used to determine
the required set of fictitious values. At each irregular grid point, this procedure is exactly the same as what
described for the straight interfaces.

Let us consider a fourth-order case. We start with the interface condition (31) and the stencil shown in
Fig. 6 to derive a fourth-order scheme for uxx and ux by using following steps:

1. Use ui�3,j, . . .,ui,j and fi+1,j as a stencil to approximate u� and u�x . For u+ and uþx we choose stencil
fi,j,ui+1,j, . . .,ui+4,j. Here, uþy is discretized on auxiliary points (o,j), . . ., (o,j + 4), to ensure an accuracy

of O(h5).
2. Solve the 2 · 2 linear system resulting from Step 1 for the representations of fi,j and fi+1,j.
3. Use ui�3,j, . . .,ui,j and fi+1,j,fi+2,j to approximate u� and u�x , and use fi�1,j,fi,j and ui+1,j, . . .,ui+4,j to approx-

imate u+ and uþx . Use the same approximation for uþy as Step 1. Note that at this moment, both fi,j and
fi+1,j are known.

4. Solve the 2 · 2 linear system resulting from Step 3 for the representations of fi�1,j and fi+2,j.
5. Substitute appropriate terms of fi�1,j, fi,j, fi+1,j, fi+2,j for the values at irregular points when the standard

fourth-order central discretization of ux or uxx crosses the interface.



Fig. 6. A typical stencil used in constructing a fourth-order scheme for uxx and ux. There are two pairs of fictitious points in this case:
fi,j, fi+1, j and fi�1,j, fi+2,j.
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This iterative procedure is systematic and is of arbitrarily high order provided there are enough regular
points available on both side of the interface. For example, a sixth-order discretization of uxx and ux can be
constructed by using the stencil illustrated in Fig. 7. In this case, we successively solve the representations
for three pairs of fictitious values (fi,j, fi+1,j), (fi�1,j,fi+2,j) and (fi�2,j,fi+3,j). It is noted that in constructing
high order MIB methods, one needs to ensure that the local truncation error at the irregular point is
one order lower than the designed global order of accuracy. The nature of high order accuracy of these
schemes can be appreciated from the numerical examples presented in Section 4.

It is noted that for a general interface the difference scheme generated by the MIB involves more nodes
than the IIM and of course, more than the standard central difference scheme. The number of grid points
and distribution of the MIB stencils vary with the underlying mesh and the local extension of the interface
relative to the mesh. Also, the resulting linear system is no longer symmetric and diagonally dominant, as in
the case of the IIM. Nevertheless, all the iterative solvers we tested, no matter the successive overrelaxation
(SOR) or the preconditioned biconjugate gradient (PBCG), always yield the solution with favorable con-
vergence rate. Detailed comparison in terms of accuracy and CPU time is given in Section 4.
Fig. 7. A typical stencil used in constructing a sixth-order scheme for uxx and ux. Now there are three pairs of fictitious points in this
case: fi,j,fi+1,j and fi�1,j, fi+2,j as well as fi�2,j, fi+3,j.
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3. Numerical experiments on regular interfaces

In this section, we test the performance of the proposed MIB method for regular elliptic interface prob-
lems. Benchmarked with analytical solution, both the order of accuracy and the computational efficiency
are investigated for the MIB method through 1D, 2D, and 3D studies. However, only 3D results are
reported. The standard central FD scheme is used for a comparison. The standard preconditioned bicon-
jugate gradient (PBCG) method [41] with the preconditioner being the diagonal part of the discrete matrix
is employed to solve algebraic systems obtained from both the MIB and FD discretizations. In all studied
cases, the interfaces are not laid on the grid nodes.

Consider the 3D elliptic equation
ðbuxÞx þ ðbuyÞy þ ðbuzÞz � bk2u ¼ q; ðx; y; zÞ 2 X ¼ ½0; 1� � ½0; 1� � ½0; 1�; ð77Þ
with Dirichlet boundary conditions along the x- and z-directions and Neumann boundary conditions along
the y-direction. Here k is a constant. Suppose that the media are only inhomogeneous along the x direction,
i.e.,
b ¼
b1; X1 ¼ fðx; y; zÞj0 6 x < a; 0 6 y 6 1; 0 6 z 6 1g;
b2; X2 ¼ fðx; y; zÞja 6 x 6 1; 0 6 y 6 1; 0 6 z 6 1g.

�
ð78Þ
We consider a sinusoidal source
qðx; y; zÞ ¼
C1 sinðnpxÞ cosðmpyÞ sinðjpzÞ; ðx; y; zÞ 2 X1;

C1 sinðnpxÞ cosðmpyÞ sinðjpzÞ � C2b2 cosðmpyÞ sinðjpzÞ; ðx; y; zÞ 2 X2;

�
ð79Þ
where n, m and j are integers and C1 = �n2p2�m2p2�j2p2�k2, C3 ¼ sinðnpaÞð1=b1 � 1=b2Þ, and C2 =
C3(m

2p2 + j2p2 + k2). With such a source term, the analytical solution of Eq. (77) reads
uðx; y; zÞ ¼
1
b1
sinðnpxÞ cosðmpyÞ sinðjpzÞ; ðx; y; zÞ 2 X1;

1
b2
sinðnpxÞ cosðmpyÞ sinðjpzÞ þ C3 cosðmpyÞ sinðjpzÞ; ðx; y; zÞ 2 X2.

(
ð80Þ
The constant C3 ensures that solution u(x,y,z) is continuous across the interface x = a, and the jump con-
ditions are given by
½u� ¼ 0; and ½bux� ¼ 0. ð81Þ

It can be derived from the analytical solution (80) that, the boundary conditions are u(0,y,z) = 0,
uð1; y; zÞ ¼ C3 cosðmpyÞ sinðjpzÞ, ou

oy jy¼0 ¼ 0, ou
oy jy¼1 ¼ 0, u(x,y,0) = 0, and u(x,y,1) = 0.

We first examine the numerical convergence orders of the FD and MIB methods. A uniform mesh is used
with size N = Nx = Ny = Nz. The maximum error and the overall accuracy of the approximation are mea-
sured, respectively, in terms of the standard L1 norm,
L1 ¼ max
i¼1;...;N3

jui � ~uij;
and the standard L2 norm,
L2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N 3

XN3

i¼1

ðui � ~uiÞ2
vuut ;
where ui is the analytical solution and ~ui is the numerical solution. We are interested in examining the per-
formance of the proposed scheme for both low b contrast and high b contrast across the interface. These
results are presented in Tables 1 and 2, respectively. In comparing the MIB results in both tables, it can be



Table 1
Numerical convergence tests of the 3D elliptic equation with low contrast b

Scheme N3 L2 L1

303 603 1203 303 603 1203

FD Error 9.33(�2) 2.24(�2) 7.62(�3) 3.87(�1) 1.65(�1) 1.17(�1)
Order 2.06 1.56 1.23 0.49

2nd-order MIB Error 9.81(�2) 2.05(�2) 4.88(�3) 3.86(�1) 8.01(�2) 1.90(�2)
Order 2.26 2.07 2.27 2.07

4th-order MIB Error 3.14(�2) 2.19(�3) 1.41(�4) 1.29(�1) 8.71(�3) 5.55(�4)
Order 3.84 3.96 3.89 3.97

8th-order MIB Error 9.99(�3) 4.61(�5) 2.03(�7) 5.94(�2) 1.83(�4) 8.31(�7)
Order 7.76 7.83 8.34 7.79

16th-order MIB Error 4.81(�2) 1.27(�6) 8.54(�12) 4.77(�1) 1.60(�5) 1.66(�10)
Order 15.20 17.19 14.86 16.56

The model parameters are chosen as k = 1, n = 18, m = 18, j = 18, a = 0.5, b1 = 4 and b2 = 1. For the 2nd-, 4th-, 8th-, and 16th-order
MIB, (M,L) is set to be (1,1), (2,4), (4,9), and (8,15), respectively.

Table 2
Numerical convergence tests of the 3D elliptic equation with high contrast b

Scheme N3 L2 L1

303 603 1203 303 603 1203

FD Error 1.12(�1) 3.40(�2) 1.25(�2) 7.17(�1) 4.35(�1) 2.27(�1)
Order 1.72 1.45 0.72 0.94

2nd-order MIB Error 9.52(�2) 1.99(�2) 4.74(�3) 3.86(�1) 8.01(�2) 1.90(�2)
Order 2.26 2.07 2.27 2.07

4th-order MIB Error 3.05(�2) 2.13(�3) 1.37(�4) 1.29(�1) 8.71(�3) 5.55(�4)
Order 3.84 3.96 3.89 3.97

8th-order MIB Error 9.70(�3) 4.47(�5) 1.97(�7) 5.94(�2) 1.83(�4) 8.31(�7)
Order 7.76 7.83 8.34 7.79

16th-order MIB Error 4.66(�2) 1.24(�6) 8.30(�12) 4.77(�1) 1.60(�5) 1.67(�10)
Order 15.20 17.18 14.86 16.55

The model parameters are chosen as k = 1, n = 18, m = 18, j = 18, a = 0.5, b1 = 80 and b2 = 1. For the 2nd-, 4th-, 8th-, and 16th-order
MIB, (M,L) is set to be (1,1), (2,4), (4,9), and (8,15), respectively.
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observed that the L1 errors and orders of both low and high contrast cases are exactly the same. Due to the
large variation in magnitude of the solutions in two contrast cases, the L2 errors of the MIB in two tables
are slightly different. But the L2 errors and their orders are still very similar. This suggests that the MIB
approach yields essentially the same result, no matter how large the jump in solution is. This further means
that the numerical error of the MIB is induced solely by the oscillatory nature of the solution, rather than
by the interface. Therefore, the accuracy of the high order FD schemes is fully restored by the MIB method
in these studies. Up to 16th orders are achieved numerically by the MIB approach for this 3D elliptic inter-
face problem. However, without the proper interface modeling, the FD accuracy is at most of first-order in
L1 norm measure, and becomes worse when the contrast in b is higher. The projection of the MIB solution
for the 3D elliptic equation at z = 1/64 are shown in Fig. 8.

We next present an efficiency study which clearly illustrates the computational efficiency gained by using
the higher order MIB approach, in place of low order schemes, see Table 3. Successive mesh refinements
are considered towards the accuracy level L1 � 0.1% for the FD and MIB methods. This desired level



Fig. 8. The projection of the MIB solution of the 3D elliptic equation at z = 1/64, with (M,L) = (8,17), N3 = 1203, k = 1, n = 32,
m = 32, j = 32 and a = 0.5. Left: Low contrast case (b1 = 4 and b2 = 1); Right: High contrast case (b1 = 80 and b2 = 1).

Table 3
Numerical efficiency tests of the 3D elliptic equation

N3 FD 2nd-order MIB 12th-order MIB

603 1203 2403 603 1203 2403 303

L2 2.21(�2) 9.02(�3) 4.07(�3) 8.61(�3) 2.09(�3) 5.18(�4) 1.71(�4)
Order 1.29 1.15 2.04 2.01

L1 3.01(�1) 1.53(�1) 7.66(�2) 3.47(�2) 8.40(�3) 2.08(�3) 1.83(�3)
Order 0.98 1.00 2.05 2.02

CPU 3.14 185.08 4731.63 0.75 9.66 93.13 0.28

The model parameters are chosen as k = 1, n = 12, m = 12, j = 12, a = 0.5, b1 = 80 and b2 = 1. For the 2nd and 12th-order MIB,
(M,L) is set to be (1,1) and (6,7), respectively. CPU time in second is reported.
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of accuracy is actually very challenging for low order methods in 3D, because the memory requirement goes
quickly beyond the limit of our computer resource after only a few refinements. In particular, a 3D com-
putation with a huge mesh size of 4803 impractically requires over 2 Gbytes memory, so that the last three
mesh refinements that are feasible are just until 2403, as shown in Table 3. It is noted that in the PBCG
iterative solver [41], only non-zero elements are stored for the large sparse matrix resulting from the
PDE discretization. We also note that the FD scheme does not require the PBCG iterative solver. A small
reduction in the CPU time can be gained for the FD scheme if a simpler iterative solver is used. It is clear
from Table 3 that the 12th-order MIB delivers the desired accuracy by using only a very small mesh size of
303 and 0.28 sec CPU time. The 16th-order MIB can also achieve the same goal by using the same mesh and
slightly more CPU time. However, to almost reach the same accuracy, the second-order MIB scheme re-
quires a large mesh size of 2403 and 93.13 s computing time. In other words, our 12th-order approach is
about at least 332 times more efficient in terms of CPU time than a second-order method, such as a sec-
ond-order MIB or the IIM. By using a huge mesh size of 2403 and 4731.63 s execution time, the FD accu-
racy is still far away from the target one. It is really hopeless to achieve that goal by using such a slowly
converged method. Moreover, it is interesting to note that based on the same mesh size, and using stencils
of the same length, the execution time of the second-order MIB is usually much smaller than that of the
standard FD method, although the same standard PBCG solver [41] is employed in both methods. In fact,
similar behavior has been observed in our 1D and 2D studies, too. This suggests that the presence of the
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interface will not only degrade all numerical scheme to first-order, but also slow down the convergence
speed of the iterative solver, whereas both impairments can be recovered after using the MIB method.
4. Numerical experiments on irregular interfaces

In this section, we examine the performance of the proposed MIB scheme for 2D irregular interface
problems by considering six case studies with different boundary and interface geometry. We will focus
on the standard second-order MIB method in the first 4 cases, while the last two cases are devoted to
the validation of high order MIB schemes. Numerical results are compared to the analytical solutions of
the equation, in terms of both numerical accuracy and computational efficiency. The IIM of LeVeque
and Li [25] is regenerated for a comparison in some test cases. The performance of our IIM code has been
verified with that in the literature [25] and is found to be similar to a later version of the IIM given by Li and
Ito [29]. The PBCG solver [41] is exclusively adopted to solve the linear system due to its efficiency and the
simplicity in implementation. The standard L1 norm error measurement is employed in this section.

Case 1. We are interested in the 2D Poisson equation
ðbuxÞx þ ðbuyÞy ¼ qðx; yÞ ð82Þ
defined in a square [�1,1] · [�1,1] with a circular interface r2 � x2 þ y2 ¼ 1
4
inside. Following [25], the exact

solution is designed to be
uðx; yÞ ¼
x2 þ y2; r 6 0:5;

1
4
1� 1

8b � 1
b

� �
þ r4

2
þ r2

� �
=b; otherwise;

(
ð83Þ
with the diffusion coefficient
bðx; yÞ ¼
2; r 6 0:5;

b; otherwise.

�
ð84Þ
Such a designated solution forces the discontinuous inhomogeneous term q(x,y) to be
qðx; yÞ ¼
8:0; r 6 0:5;

8ðx2 þ y2Þ þ 4:0; otherwise.

�
ð85Þ
Let b = 10 such that u(x,y) is continuous throughout the domain and [bun] = �0.75 on the interface. The
computed result with a 20 · 20 mesh is plotted in Fig. 9. Table 4 lists the computed error of the second-
order MIB scheme in a comparison with the results of the IIM. Both methods have very clear second-order
accuracy. The MIB delivers a slightly more accurate result than that of the IIM. It is found that the CPU
times used for generating the local immersed grids are almost the same for both methods although the
underlying algorithms are different. The CPU times used for solving the linear algebraic equation systems
are not compared because the IIM method has its own optimal solver [29], while no such solver is available
for the MIB yet. It is expected the IIM is faster since it involves fewer irregular nodes.

Case 2. In this case, we solve the Laplace equation uxx + uyy = 0, which is defined in square [�1,1] · [�1,1]
and has the following analytical solution as designed:
uðx; yÞ ¼
ex cosðyÞ; r 6 0:5;

0; otherwise;

�
ð86Þ



Fig. 9. Computed solution (left) and the error (right) for the 2D Poisson equation (Case 1). b = 10, [u] = 0, [bun] = �0.75.

Table 4
Numerical efficiency tests of the 2D Poisson equation (Case 1)

nx · ny Second -rder MIB IIM

L1 Order L1 Order

20 · 20 2.852(�4) 2.167(�3)
40 · 40 7.707(�5) 1.9 5.000(�4) 2.1
80 · 80 2.069(�5) 1.9 1.131(�4) 2.1
160 · 160 5.131(�6) 2.0 2.748(�5) 2.0
320 · 320 1.257(�6) 2.0 6.781(�6) 2.0

b = 10, [u] = 0, [bun] = �0.75.
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The jumps in u and un along the interface r ¼ 1
2
can be evaluated from this solution. Note that here we have

unit diffusion coefficient throughout the whole domain.
Table 5 gives the computational results of the second-order MIB and the IIM for a comparison. Again,

as expected, a steady second-order convergence is validated for both methods. Moreover, MIB scheme is
slightly favored due to the smaller numerical error on all the five successively refined meshes. The computed
result in Fig. 10 sharply features designated discontinuity along the circular interface.

Case 3. Here, we solve the Poisson equation with elliptical interface C given as
x
18=27

� �2

þ y
10=27

� �2

¼ 1. ð87Þ
It admits the exact solution
uðx; yÞ ¼
ex cosðyÞ; inside C;

5 expð�x2 � y2

2
Þ; otherwise.

(
ð88Þ
We leave the diffusion coefficient to be tuned to produce different contrast ratios. Outside the interface C,
we fix the diffusion coefficient to be 1. In the first experiment we choose b = 10 for the inside whilst a much
large b = 1000 is chosen in the second experiment. The computed solution and error for the large contrast



Table 5
Numerical efficiency tests of the 2D Laplace equation (Case 2)

nx · ny Second-order MIB IIM

L1 Order L1 Order

20 · 20 1.015(�4) 4.389(�4)
40 · 40 2.511(�5) 2.0 1.079(�4) 2.0
80 · 80 6.369(�6) 2.0 2.778(�5) 2.0
160 · 160 1.608(�6) 2.0 7.500(�6) 1.9
320 · 320 3.714(�7) 2.1 1.740(�6) 2.1

b ” 1.

Fig. 10. Computed solution (left) and the error (right) for the 2D Laplace equation (Case 2). b ” 1.

Table 6
Accuracy assessment of the MIB method for the Poisson equation with elliptical interface (Case 3)

Second-order MIB JCCS

nx · ny L1 Order nr · nh L1 Order

20 · 20 2.659(�2) 23 · 32 1.755(�2)
40 · 40 5.206(�3) 2.4 41 · 64 4.961(�3) 1.8
80 · 80 1.487(�3) 1.8 77 · 128 1.352(�3) 1.9
160 · 160 3.746(�4) 2.0 149 · 256 3.548(�4) 1.9
320 · 320 7.803(�5) 2.3 293 · 512 9.096(�5) 2.0

b = 10 inside of C; b = 1 outside of C. For the JCCS, a polar coordinate is used and the elliptical interface in the physical domain is
mapped onto a circular interface in the computational domain. nr or nh is the number of mesh points in respective direction.
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ratio are plotted in Fig. 11. The numerical errors are also given in Tables 6 and 7 in a comparison with the
results of the jump condition capturing scheme (JCCS) obtained by Wang [48]. The JCCS is constructed
based on the GFM.

For the case with b = 10 in the inside, two methods produce results with very close errors. For b = 1000
in the inside, however, the results of the MIB are much more accurate than those of the JCCS, particularly,
a significant increasing was found in the numerical error of the JCCS accompanying this improvement of
the ratio of diffusion coefficients. This indicates that the MIB is much less sensitive to the difference of b on



Table 7
Accuracy assessment of the MIB method for the Poisson equation with elliptical interface (Case 3)

Second-order MIB JCCS

nx · ny L1 Order nr · nh L1 Order

22 · 22 9.130(�2) 23 · 32 2.803
40 · 40 2.764(�2) 1.9 41 · 64 7.543(�1) 1.9
80 · 80 7.524(�3) 1.9 77 · 128 1.940(�1) 2.0
160 · 160 2.169(�3) 2.0 149 · 256 4.906(�2) 2.0
320 · 320 4.841(�4) 2.2 293 · 512 1.232(�2) 2.0

b = 1000 inside of C; b = 1 outside of C.

Fig. 11. Computed solution (left) and the error (right) for the 2D Poisson equation with elliptical interface C (Case 3). b = 1000 inside
of C; b = 1 outside of C.
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the two sides of the interface thus would be more robust and accurate for the problem with a large jump in
the diffusion coefficient.

Case 4. As in the preceding example, we illustrate the usefulness of the second-order MIB method for an
elliptic problem with a more complicated interface geometry. In this case, the treatment of the physical
irregular domain is similar to that in Case 2, i.e., by embedding the physical irregular domain into a slightly
larger rectangular domain and treating the physical irregular boundary as an interface inside the new
domain. Thus one obtains an elliptic interface problem favoring interface methods. The necessary interface
conditions can be derived from the given boundary conditions of the original problem. In our case, the
physical irregular boundary C is defined to be
r ¼ 0:5ð1þ 0:5 sinð6hÞÞ ð89Þ

and the analytical solution of the Poisson equation in the extended domain [�1,1] · [�1,1] is
uðx; yÞ ¼
1
4
þ sinðxÞ sinðyÞ; inside C;

0; outside C;

�
ð90Þ
with b = 1.



Fig. 12. Computed solution and the error of Case 4.
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In computation, the value of u(x,y) outside of C is set to be zero as it is already known. The computed
error for the accuracy assessment is very similar to earlier cases so its table is omitted here. The numerical
solution on a 40 · 40 mesh is plotted in Fig. 12, together with the plot of the absolute error whose
maximum is about 4.7 · 10�6.

Case 5. In this case, we demonstrate the second- and fourth-order MIB schemes. The interface is given as
C(x) = 0.2 tanh(exp(1/(1�x))�exp(1/(1 + x))). The exact solution of the Poisson equation is
Fig. 1
uðx; yÞ ¼
sinððy � CðxÞÞÞ cosðxÞ; y P CðxÞ;
sinð4ðy � CðxÞÞÞ cosðxÞ þ 1; otherwise.

�
ð91Þ
The value of b is prescribed to be 5 above the C(x) and 1 below, which gives a non-vanishing flux discon-
tinuity at the interface. Fig. 13 (left) depicts the computed solution on a 40 · 40 grid. The L1 norm errors
of both the second- and fourth-order schemes are tabulated in Table 8.
3. The solution of the high order MIB method for the 2D Poisson equation. Left: Case 5; Right: Case 6, �u(x,y) is plotted.



Table 8
Accuracy assessment of the second- and fourth-order MIB schemes for the Poisson equation in Case 5

nx · ny Second-order MIB Fourth-order MIB

L1 Order L1 Order

40 · 40 7.44(�3) 1.40(�3)
80 · 80 1.68(�3) 2.1 5.76(�5) 4.6
160 · 160 4.99(�4) 1.8 3.82(�6) 3.9
320 · 320 1.37(�4) 1.9 2.19(�7) 4.1

Table 9
Comparison of the second-, fourth- and sixth-order MIB schemes for the Poisson equation (Case 6)

nx · ny Second-order MIB Fourth-order MIB Sixth-order MIB

L1 Order CPU L1 Order CPU L1 Order CPU

20 · 20 1.20(�3) 0.155 2.47(�5) 0.552
(0.008) (0.02)

40 · 40 2.85(�4) 2.07 1.45 1.51(�6) 4.03 3.714 3.48(�8) 10.94
(0.026) (0.07) (0.15)

80 · 80 6.55(�5) 2.12 11.18 6.16(�8) 4.61 25.85 3.42(�10) 6.64 90.67
(0.089) (0.24) (0.55)

160 · 160 1.67(�5) 1.97 90.26 2.88(�9) 4.41 249.8 4.62(�12) 6.21 480.9
(0.227) (0.89) (1.90)

320 · 320 4.10(�6) 2.03 595.0 1.33(�10) 4.44 2760
(0.503) (1.65)

640 · 640 1.02(�6) 2.01 5174
(2.15)

The numbers in the parenthesis are the CPU times in second for the generation of local difference schemes.
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Case 6. As the last example, we illustrate further the proposed high order MIB method. In this, we design
our scheme to be of fourth- and sixth-order convergence. We note that the present method is particularly
favorable if the immersed inner boundary is convex. In such cases, there is always adequate number of grid
points to support a given high order approximation of the interface conditions. Here we choose the
immersed inner boundary as a circle of radius 1

2
with its center located at the origin. The computational

domain is [�1,1] · [�1,1], excluding the inner circle. The exact solution of the Poisson equation is set to
be u(x,y) = 5exp(�x2�y2/2) on the computational domain. We plot the numerical solution, computed
on a 40 · 40 grid, in Fig. 13 (right) with a negative sign (i.e., �u(x,y)) to illustrate the immersed inner
boundary. The accuracy and convergence order of our MIB method are presented in Table 9. For high
order method, it takes more time in the generation of the local difference schemes because of the iterative
nature of current algorithm, as given in Table 9. However, it is still negligible compared to the time spent on
the solution of the main linear system. It is seen that the result obtained by using the sixth order scheme
at the grid of 40 · 40 is about 30 times more accurate than that obtained by using the second-order scheme
at the grid of 640 · 640, while consuming only a fraction (1/473) of CPU time. In order for the second
method to reach the same accuracy of the sixth-order scheme at the grid of 40 · 40, a grid larger than
2600 · 2600 has to been used, which approximately costs 300,000 s CPU time. Therefore, the sixth-order
scheme is about 28,000 times more efficient than the second-order scheme in terms of CPU time. It is noted
that the CPU time used for the generation of the local finite difference scheme (i.e, the immersed grids) is
very small compared to that for solving the linear algebraic equation system.
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5. Discussion

In this section, we give a comparison between the proposed MIB scheme and other well established
methods, such as the immersed interface method (IIM) and the ghost fluid method (GFM), so as to have
a better understanding of these methods.

First, all the aforementioned three interface methods require an explicit identification of the interface
and associated irregular grid points. However, the choice of irregular points differs very much in three
methods. An irregular point in the IIM might be a regular point in the MIB method, vice versa. In each
method, irregular points are determined by the interface location and the selection of discretization
schemes. In general, higher order schemes involve more irregular points.

Second, in the MIB approach, fictitious points (FPs) are created so that standard higher order central
finite difference (FD) schemes can be directly employed throughout the domain, including the vicinity of
the interface. When a FD scheme refers to grid point values from the other side of the interface, fictitious
function values instead of real ones will be supplied. Due to the use of FPs, a uniform discretization scheme
can be used over the whole domain. Nevertheless, one may choose different discretization schemes at any
given location in the MIB, if it is desirable. Whereas, in the IIM and GFM, discretization schemes in the
vicinity of the interface have to vary from point to point.

Third, in the MIB scheme, enforcing jump conditions is disassociated with the discretization of the gov-
erning PDE, while in the IIM, the jump conditions are satisfied in special discretization schemes along the
interface. Therefore, in the MIB method, interface modeling is virtually independent of the governing PDE
and the technique developed in solving one PDE can be applied to a vast range of interface problems with-
out too much modification. In the GFM, it is only the key features of the jump conditions rather than ori-
ginal conditions themselves that are directly incorporated into the discretized Laplacian. For example, in
higher dimensions, by means of a projection to Cartesian coordinate directions, the jump condition in
the normal derivative is captured, while the less important tangential jump is omitted in the GFM. Such
a modeling is in consistent with its overall first-order accuracy. The advantage of this modeling is that
the resulting matrix is symmetric, while the sharp solution is still maintained at the interface. However,
a change in philosophy is required in order to construct fully second-order and higher order GFMs.

Fourth, jump conditions are repeatedly enforced in the MIB method, while each jump condition is uti-
lized only once in the IIM and GFM. Since jump conditions are reused in the MIB method, only the lowest
order ones are required. Whereas, higher order jump conditions are inevitably required to construct a high
order interface scheme, if each condition is applied only once.

Fifth, in the MIB method, higher order interface modeling is equivalent to the determination of FP values
up to higher order via iteratively enforcing the jump conditions. Whereas, albeit the GFM uses ghost do-
mains, it does not enforce all the jump conditions. Therefore, a change in philosophy is required for the
GFM to achieve higher order accuracy. In the IIM, to achieve high order accuracy, entirely new discretization
schemes that involve additional grid point(s) across the interface are to be constructed via incorporating jump
conditions to the Taylor expansion. Thus, higher order interfacemodeling is equivalent to creatingmore jump
conditions for higher order Taylor expansions. Such an extension to higher order is possible in 1D as explored
in solvingMaxwell�s equations [52,53], but will be extremely difficult, if not impossible, for 2D or 3D interface
problems for the following reasons: (i) Higher order jump conditions are usually quite complicated and in-
volve high order derivatives. For example, the second order jump condition used in the IIM, which is derived
from the PDE and low order jump conditions, typically involves u�; uþ; u�n ; u

þ
n ; u

�
s ; u

þ
s ; u

�
nn; u

þ
nn; u

�
ss; and uþss.

(ii) For a given order of accuracy, the discretization of a higher order derivative jump condition requires a
larger stencil or involves more FPs, which in turn requires more higher order jump conditions. (iii) For many
elliptic equations, such as the Helmholtz equation, cross derivatives will be involved, whose discretization re-
quires wide stencils or many FPs in both the x- and y-directions. Consequently, the growth of the number of
jump conditions can never match the growth of stencils or the number of FPs.
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Sixth, for regular interfaces, the interface modeling can be carried out in a systematic and automatic
manner in the MIB method. As a consequence, one MIB code will be able to generate schemes of different
orders by simply adjusting a parameter. We can choose a desirable order of accuracy for a given problem
under study. For irregular interfaces, though the MIB procedure proposed in the present work is system-
atic, the MIB, GFM and IIM all require subtle treatment of irregular grid points locally.

Seventh, due to the use of FPs and the separation of enforcing jump conditions from the discretization of
the PDE, the MIB can be incorporated with other existing high-order methods for hyperbolic conservation
laws, such as weighted essentially non oscillatory (WENO) schemes [34] and the conjugate oscillation
reduction scheme (CFOR) [50,55]. We expect that such MIB based shock capturing methods would return
sharp shock fronts.

Finally, it is noted that the IIM has been developed and significantly improved over the past decade by a
number of researchers [4–6,10,16–19,21,23,24,30,31,36,42,43,46,47,51]. It is by far one of the most powerful
existing methods for the solution of elliptic equations involving interfaces and/or singular sources. Using
only one FPs on each side of the interface to capture the essence of the jump condition, the GFM is very
simple and easy to realize for complex problems [12,35,48]. Adopting the FPs idea from the GFM and over-
coming the difficulty of generating higher order schemes in the IIM, the proposed MIB can be regarded as a
generalization of both the GFM and IIM.
6. Conclusion

In this work we have formulated novel high order schemes for solving elliptic equations with discontin-
uous diffusion coefficients and/or singular source terms, based on the matched interface and boundary
(MIB) method originally proposed for time-domain electromagnetic wave scattering and propagation
[52,53]. Two significant generalizations are made to the previous MIB method. First, the construction of
high order MIB schemes was extended from Maxwell�s equations to elliptic equations. Second, the formu-
lation of the MIB scheme was extended from regular, straight interfaces to general, irregular interfaces,
which endows the MIB method the applicability to a vast range of practical problems. The extension to
curved interfaces was made possible by adding auxiliary line and fictitious points (FPs) such that one
can strictly enforce physical jump conditions near the interface. Extensive numerical experiments are car-
ried out to verify the high order nature of the proposed MIB scheme for both regular interfaces and curved
interfaces. The MIB works well on the regular Cartesian grid and is robust regardless the magnitude of the
jump discontinuity across the interface. In addition, the MIB does not require high order interface jump
conditions as well as the high regularity of the interface. In general, the MIB method is more efficient
and requires less CPU time at a given level of accuracy than other existing methods. Comparison is made
to the immersed interface method (IIM) and the ghost fluid method (GFM) both numerically and theoret-
ically. The main new features of the proposed MIB method are the follows: (1) the disassociation between
enforcing jump conditions and discretizing PDEs via FPs; (2) the repeated use of the lowest order jump
conditions via an iterative scheme. For solving elliptic equations, the proposed MIB method can be re-
garded as a generalization of the IIM and GFM. The generalization of the MIB method for treating Lips-
chitz continuous interfaces, for tracing moving interfaces, and for electromagnetic scattering are currently
under our investigation.
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